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Flow along a long thin cylinder
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Two different approaches have been used to calculate turbulent flow along a long
thin cylinder where the flow is aligned with the cylinder. A boundary-layer code is
used to predict the mean flow for very long cylinders (length to radius ratio of up
to 0(10%)), with the effects of the turbulence estimated through a turbulence model.
Detailed comparison with experimental results shows that the mean properties of the
flow are predicted within experimental accuracy. The boundary-layer model predicts
that, sufficiently far downstream, the surface shear stress will be (almost) constant.
This is consistent with experimental results from long cylinders in the form of sonar
arrays. A periodic Navier—Stokes problem is formulated, and solutions generated for
Reynolds number from 300 to 5 x 10*. The results are in agreement with those from
the boundary-layer model and experiments. Strongly turbulent flow occurs only near
the surface of the cylinder, with relatively weak turbulence over most of the boundary
layer. For a thick boundary layer with the boundary-layer thickness much larger than
the cylinder radius, the mean flow is effectively constant near the surface, in both
temporal and spatial frameworks, while the outer flow continues to develop in time or
space. Calculations of the circumferentially averaged surface pressure spectrum show
that, in physical terms, as the radius of the cylinder decreases, the surface noise from
the turbulence increases, with the maximum noise at a Reynolds number of O(103).
An increase in noise with a decrease in radius (Reynolds number) is consistent with
experimental results.

1. Introduction

Axial flow along a long cylinder is relevant to a number of applications, including
the flow along wire or thread, drawing of optical fibres, and the flow along towed
sonar arrays which are used for underwater sensing. A sonar array may have a very
large ratio of length to radius, up to O(10°), with a radius in the order of centimetres
and a length of a kilometre or more. Currently there is a trend to develop smaller,
more easily deployed devices, using, for example, optical fibres as sensors. However,
the performance of towed arrays is usually limited by the noise generated by the
turbulent fluctuations on the surface of the body (Knight 1996), and, for a given
flow velocity (tow speed), decreasing the diameter of the array leads to an increase
in the turbulent noise (Marschall et al. 1993; Potter et al. 2000). This process would
not be expected to continue indefinitely, and one question addressed in this paper
is how small the cylinder must be before the turbulent flow noise stops growing.
The sensors on towed arrays are usually mounted along the axis of the cylinder,
and measure averaged pressure in some form rather than point pressure, through a
transfer function representing the transfer of the surface pressure fluctuations to the
axis. The form of the transfer function will depend on the construction of the array
and the configuration of the sensors, and will not be considered here (see Knight 1996
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for a theoretical study of this effect). The work presented here is concerned mainly
with behaviour quantities relevant to the performance of towed arrays. In particular,
we will consider the variation of the wall mean shear stress and the circumferentially
averaged wall pressure spectra with the Reynolds number of the flow. However,
in addition to the spectra for circumferentially averaged wall pressure, some point
spectra will be presented.

Flow along a cylinder has an additional length scale to that for a flat plate, the
cylinder radius. If the boundary layer is thin compared to the radius, then the flow
will resemble that on a flat plate, with negligible effect from the curvature of the
wall. However, once the boundary thickness becomes comparable with the size of
the cylinder, effects of curvature will be significant. The flow also depends on the
Reynolds number, which is defined in terms of the cylinder radius a and free-stream
velocity U,, so that Re=aU,,/v, where v is the kinematic viscosity of the fluid. We can
also define at =au, /v where u, =(t,/p)"/? is the friction velocity, with z,, the shear
stress at the wall and p the density of the fluid. a* gives the radius of the cylinder in
wall units. It is also the Reynolds number using the friction velocity as the reference
velocity. For y™ of O(a™) or greater, where y* is the distance from the surface in
wall units, the effects of the curvature of the wall will be important. Closer to the
wall, the effects of curvature will be less important. If a* is large, the boundary layer
near the surface should resemble that for a flat plate, with the curvature significant
only in the outer part of the flow. For small a™, the effects of curvature will be felt
closer to the wall. In the laminar sublayer for a flat plate, we have ut = y*, where
ut=u/u,, and u is the streamwise velocity. This reflects momentum equilibrium in
the sublayer, given by t = t,,. For the cylinder, as noted by Glauert & Lighthill (1955)
among others, the equilibrium model is rt =art,. This gives

ut =atlog(l+y*/a™). (1.1)

Hence if a™ is O(1), the effects of the wall curvature would extend right to the wall.

For the laminar problem, Seban & Bond (1951) give the first three terms in a
series solution valid near the leading edge of the cylinder, giving expressions for
the shear stress on the surface and the displacement area. Stewartson (1955) gives
a series solution for very large distances along the cylinder. Stewartson shows that
sufficiently far along the cylinder, the wall shear stress decays logarithmically with
distance, rather than algebraically as is usually found. Glauert & Lighthill (1955)
considered the flow along the entire cylinder. They developed a similar series solution
to Stewartson for the flow far downstream. They produced a set of recommended
curves for quantities such as the displacement area and the skin friction.

Tutty, Price & Parsons (2002) solved the problem of laminar boundary-layer flow
on a cylinder numerically. They found good agreement with the predictions of Seban
& Bond (1951) near the leading edge and Glauert & Lighthill (1955) far downstream.
All these studies showed that there is an increase in the surface shear stress and a
decrease in the boundary-layer thickness compared with those for a flat plate. Tutty
et al. (2002) also considered the linear normal mode stability of the flow. They found
that for Reynolds numbers less than 1060 the flow is unconditionally stable. This is
in marked contrast to the flat-plate boundary-layer problem where the flow always
becomes unstable if far enough downstream. Further, for the cases investigated,
above the critical Reynolds number the flow was unstable for a finite distance only,
reverting to stability further downstream, with closure of the neutral stability curves.
Also, unlike planar flows, the two-dimensional (axisymmetric) mode was not the least
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stable, but had only the fourth lowest critical Reynolds number. The mode with the
lowest critical value was that with an azimuthal wavenumber of one.

The studies that exist for turbulent flow along a cylinder are mainly experimental,
complemented by some attempts to obtain an appropriate form for a law of the wall.
A substantial body of work comes from Lueptow and his colleagues (Lueptow, Leechey
& Stellinger 1985; Lueptow & Haritonidis 1987; Lueptow 1988, 1990; Lueptow &
Jackson 1991; Wietrzak & Lueptow 1994; Snarski & Lueptow 1995; Nepomuceno &
Lueptow 1997; Bokde, Lueptow & Abraham 1999). These are experimental studies of
flow with a Reynolds number of 3 x 10° — 5 x 10 with the boundary-layer thickness
5-8 times the cylinder radius. Lueptow (1988) is a review of much of the experimental
work to that point. Willmarth et al. (1976) measured the boundary layer on vertically
mounted cylinders with Reynolds numbers from 482 to 92310 with the boundary-
layer thickness from 1.88 to 42.5 times the cylinder radius.

Luxton, Bull & Rajagopalan (1984) investigated cylinders for Reynolds numbers
from 140 to 785. Although the flow was unsteady for all Reynolds numbers, Luxton
et al. (1984) observed that at the lowest Reynolds number, Re= 140, the high-
frequency content of the flow was low, and argued that this flow was transitional
rather than fully turbulent. They also observed that the turbulence intensities over
most of the boundary layer were much lower than those expected on a flat plate,
with peak values near the wall about twice that found on a flat plate. From this they
suggested that the flow contained two scales, a fine wall scale with a gross outer scale
forming most of the layer.

A series of experiments has been performed in a large towing tank (approximately
900m in length) using thin cylinders aligned with the flow, with diameters of
order 1 mm and lengths of order 100m (Cippola & Keith 2003a; Furey, Cippola
& Atsavappranee 2004) at relatively low Reynolds numbers (Re of O(10° — 10%)). A
primary measurement in this work is the mean drag on the cylinders as a function
of cylinder length, obtained by a direct measurement of the force on the body for
cylinders of different lengths. From this, estimates of the momentum thickness at the
ends of the cylinders are calculated. Furey et al. (2004) plot the mean wall shear stress
against length for a cylinder with radius 0.445 mm for tow speeds from 3.1 ms~! to
144ms~!. As far as can be seen from the plot (figure 6, Furey et al. 2004), there is
no decay in the wall shear stress with the length of the cylinder, which varies from
around §m to 150 m long.

As for laminar flow, the experimental studies show that the turbulent boundary
layer on a cylinder has higher mean shear stress and is thinner that its counterpart on
a flat plate. One observation is that the outer flow acts like a continuously regenerated
wake rather than a boundary layer attached to a wall (Denli & Landweber 1979;
Luxton et al. 1984; Lueptow & Haritonidis 1987; Wietrzak & Lueptow 1994).

The only numerical studies related to turbulent axial flow on a cylinder that
we are aware of are those by Neves, Moin & Moser (1994) and Neves & Moin
(1994). This work is also reported in Neves et al. (1992) which contains more detail.
Rather than a spatially developing boundary layer with zero pressure gradient, Neves
et al. considered a model problem, periodic in the streamwise direction, with a fixed
boundary-layer thickness, and with a ‘mild streamwise pressure gradient’ to suppress
the spatial growth of the boundary layer. We note that for a laminar flow, a non-zero
pressure gradient can be introduced to suppress the boundary-layer growth, or more
precisely, to fix the boundary-layer thickness. However, the streamwise velocity and
pressure gradient cannot be constant, but must develop either spatially downstream
or in time.
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A number of studies consider the surface wall pressure spectra, although for
relatively thin boundary layers (2-11 times the cylinder radius). Also, usually the
spectra are for pointwise pressure measurements rather than the circumferentially
averaged pressure found with towed sonar arrays. Willmarth & Yang (1970) give
experimental spectra for a cylinder with Re= 115000 and a boundary-layer thickness
@) of approximately 2a, and Willmarth et al. (1976) a cylinder with Re =36 800 and

~ 4a. Bokde et al. (1999) give measurements for a cylinder with Re=3300 and
8 4.81a and Snarski & Lueptow (1995) measurements for a cylinder with Re = 3644
and & = 5a. Statistics on the pressure fluctuations from the numerical study by Neves
et al. (1994) are presented in Neves & Moin (1994). They found that as the curvature
increases (in effect, the Reynolds number and hence the size of the cylinder decreases)
the root-mean-square (r.m.s.) pressure fluctuations decrease. This does not, as such,
contradict the observation that the surface noise from the turbulence increases as
the Reynolds number decreases, since the Reynolds numbers used by Neves & Moin
(1994) are two to three orders of magnitude less than those for sonar arrays.

Since a sonar array may have a length to radius ratio of up to O(10°), it is
not possible to perform a full Navier—Stokes calculation for such a configuration.
Instead, first we will investigate the axial flow along a cylinder using a boundary-layer
approach with the effects of the turbulence included through a turbulence model.
This model will be validated by detailed comparison with experimental results. It will
then be used to investigate the far-downstream behaviour of the flow. The predictions
made, including that of essentially constant wall shear stress, are shown to agree with
experimental results. Based on the results from the boundary-layer analysis, a model
problem is then formulated. This problem is periodic in the streamwise direction,
and can be solved numerically, using a Navier—Stokes solver for lower Reynolds
numbers (5000 or below), and a large-eddy simulation (LES) approach for higher
Reynolds numbers (up to 5 x 10%). The results from these calculations agree with
experimental observations and the results from the boundary-layer model. The effect
of the Reynolds number on the pressure spectra is then investigated.

2. Boundary-layer model
2.1. Formulation

The flow takes the form of a boundary layer with zero pressure gradient so that the
governing equations in polar coordinates (x, r), which are normalized by the cylinder
radius a, are

ou
- 2.1
0x rar( v) = (2.1)
ou ou 110 ou 10 —
“ox TVor " Reror (a) ~ ) 22)

where (u, v) are the streamwise and radial mean velocity components, (1, v') are the
perturbation velocities, normalized by the free-stream velocity U,,. As a result of the
assumption that the rate of change in the streamwise direction is much smaller than
that in the transverse direction, only one of the Reynolds stresses, —u'v’, appears in
the governing equations.

We make the standard assumption that the Reynolds stress is proportional to the
rate of strain, that is

1 ou
Re M or

—u'v' =

(2.3)
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where u; is the turbulent viscosity, which is normalized by the molecular viscosity wu.
The boundary-layer equation (2.2) becomes

ou ou 119 ou
— —=—-—1(r( — . .
“ox +U8r Re r or (r( +Mt)8r> 24)

The turbulent viscosity is calculated using the Spalart-Allmaras model (Spalart &
Allmaras 1994). This model uses a single transport equation for a modified turbulent
viscosity, with terms representing the generation, convection and destruction of the
turbulent viscosity. The model used in this study is as given in Spalart & Allmaras
(1994), adapted for an axisymmetric attached boundary layer. No additional tuning
was performed, and the various damping functions and constants are as given by
Spalart & Allmaras (1994).

A standard finite-difference scheme was used to solve the boundary-layer problem.
Details of procedure used for the boundary-layer equations ((2.1) and (2.4)) can be
found in Tutty et al. (2002). A Crank—Nicolson method was used for the turbulent
viscosity equation.

The radial coordinate was scaled using

r=(1+Re 'hz), (2.5)

where h = x?/3. This scaling allows for the growth of the boundary layer. Note however,
that this does not imply that the boundary layer grows as x*3. The growth of the
boundary layer will be discussed below.

The grid in z was non-uniform, with the points clustered near the surface. The
degree of stretch was adjusted to ensure that the grid point closest to the wall had
y* significantly less than one. The grid step in x was taken either as a constant or as
as x'3A with A usually taken as 0.005. The grid step in both directions was varied
to check the accuracy of the solutions.

The flow near the leading edge was laminar and the boundary layer was tripped at
a specified location. The position of the trip is not in itself important. Changing the
position of the trip simply moves the position of the turbulent boundary layer along
the cylinder, and away from the trip, results can be overlaid by adjusting the virtual
origin of the turbulent flow.

Calculations were performed for a flat plate to verify that the code was producing
the expected results. These were compared with the results from Spalart & Allmaras
(1994), with excellent agreement.

2.2. Comparison with experimental results

In this section, predictions made using the turbulence model will be compared with
experimental values found in the literature. Specifically, values taken from Willmarth
et al. (1976) and Lueptow et al. (1985). Values for the experiments will be given in a
mixture of units, matching those used in the source papers.

Willmarth et al. (1976) used a wind tunnel with speeds between 96 and 204 fts~!,
with cylinders of radius ranging from 0.01 to 1.0in. This gave Reynolds numbers
from 482 to 92 310. The wind tunnel used was constructed specifically to study axial
flow, with a vertical working section to avoid the sag which would be expected in
experiments with very long, thin cylinders mounted horizontally. Willmarth et al.
(1976) obtained flows with a large degree of axisymmetry. They did not trip the
boundary layer, nor did they measure the position of transition. In order to compare
the experimental results with the numerical values from the boundary-layer model,
the calculations were terminated at the point where the boundary-layer thickness &
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Case a U, Re 5 5 9 i, Sin 0, fen
1 0.010 96 482 0425 0.0735 0.0630 6.65 00716 0.0689 5.55
2 0.010 147 736 0375 0.0692 0.0591 9.20 0.0626 0.0602  8.08
3 0.010 180 899 0.240 0.0429 0.0327 11.30 0.0417 0.0396 9.68
4 0.020 145 1439  0.540 0.0791  0.0752 840 0.0904 0.0864 7.40
5 0.0625 142 4330 1.000 0.1780  0.1530 6.50 0.1658 0.1567 6.50
6 0.125 104 6203 1.302  0.2418  0.2237 456 02181 02023 4.61
7 0.125 160 9494  1.181 0.2042 0.1896 6.55 01942 0.1799 6.83
8 0.125 198 11693 1.165 0.1779  0.1657 7.73  0.1896 0.1758  8.29
9 0.250 105 12790 1380 0.2233  0.1994 422 02274 02039 440

10 0.250 159 19230 1.178  0.1767  0.1573 6.21 0.1898  0.1690 6.44
11 0.250 192 23100 1.159 01703  0.1537 741 0.1847 0.1646  7.65
12 0.500 155 36680 2.062 0.3460  0.3040 575 03201 0.2844 595
13 1.000 158 74260 1.760 02770  0.2370 577 02629 0.2209 587
14 1.000 204 92310 1.880 0.2940  0.2340 6.98 02764 0.2342 742

TaBLE 1. Experimental and numerical values for turbulent boundary layers. The values with
subscript n are numerical, and the others are experimental from Willmarth et al. (1976).
Lengths are in inches and velocities in fts~!.

matched that from the experiments, and the other values from the numerical solution
at this point were compared with those measured by Willmarth et al. (1976). The
boundary-layer thickness § is based on 0.99U...

Table 1 gives the test conditions for 13 different cases, as specified in Willmarth et al.
(1976). Table 1 also gives the experimental values of the boundary-layer thickness
§=ad, and the experimental and numerical values of the displacement thickness
51 =aé, the momentum thickness 6 = a6, and the friction velocity .. Note that here
and below, a circumflex will denote a dimensional quantity. The displacement and
momentum thicknesses in non-dimensional form are defined as

148
(8, 4+ 1) — 12 =2/ : (1 —u)rdr, (2.6)
1

145
(9+1)2—12:2/1+u(1—u)rdr, (2.7)

respectively. Note that for consistency with Willmarth et al. (1976), for the numerical
values given in table 1, the upper limit on the integral is set to 1 + 4 rather than co.

Percentage differences between the experimental and numerical values for 6;, 6 and
it, are given in table 2. In Willmarth et al. (1976) the velocities were measured using
a mixture of hot wires with three different lengths (0.005 in for cases 1-5, 0.019 in for
cases 68, and 0.040 in for cases 9-11) and a pressure probe (cases 12—14). Generally,
the experimental and calculated values of the displacement and momentum thickness
show good agreement for cases 5-14, with poorer agreement for cases 1-4. However,
for cases 1-4 the length of the hot wire is comparable to the radius of the cylinder,
so relatively large errors could occur. The same length hot wire was used in cases 5
and 4. Unlike case 4, case 5 shows good agreement, but the cylinder in case 5 is more
than three times as large as that in case 4.

The wall shear stress is given by %, = pii2, and hence the percentage difference
between the experimental and numerical values for 7, is approximately twice that
given in table 2 for i,. Willmarth et al. (1976) state that the accuracy of their values
for the wall shear stress is probably only +10 or 15 %. Hence for cases 5-13 there
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A A

Case 81 [ i,
1 —-2.5 94 —16.5
2 —9.5 1.9 —12.2
3 -2.8 21.0 —14.3
4 14.2 14.9 —11.9
5 —6.8 2.4 0.0
6 —9.8 —-9.5 1.1
7 —4.9 —5.1 4.2
8 6.6 6.1 7.2
9 1.8 2.2 42
10 74 74 3.7
11 8.4 7.1 3.2
12 7.5 —6.4 34
13 —5.1 —6.8 1.7
14 —6.0 0.1 6.3

TaBLE 2. Difference between experimental and numerical values as a percentage:

100( frum — Fexp)/ fexp-

is again good agreement between the experimental and calculated values of #,. The
agreement is poorer for cases 1-4. However, it is not surprising that the agreement is
not as good for the smaller cylinders. The experimental values for i, for cases 6-14
were obtained by direct measurement of the wall shear stress, while the values for
cases 1-5 were obtained by fitting to the measured velocity profiles and extrapolating
to the surface, assuming the velocity profile matched that for a planar boundary
layer. This procedure was also used to estimate the distance from the surface of the
measurement positions, since it was not possible to measure these with the accuracy
required. The hot wires used to estimate the wall shear stress were very small, with the
active part approximately 0.004 in (100 um) long and 0.00001 in (0.25 um) in radius.
Relatively large errors in measurement could occur, compounded by the fact that for
the very small cylinders the velocity profile differs from that for a flat plate, with no
clear logarithmic region (see below). Also, Lueptow & Haritonidis (1987) performed
a series of experiments for flow with Reynolds numbers from 1600 to 6400, where
they measured the skin friction directly and estimated it using the same procedure as
Willmarth et al. (1976). They found that Willmarth et al’s method produced much
larger values of the skin friction than those measured directly, especially at lower
Reynolds numbers.

Figure 1 shows velocity profiles for cases 2, 5 and 13 along with experimental
values taken from Willmarth et al. (1976). Figure 1 uses wall units, ie. shows
ut=ii/ii, against yt=(r — 1)aii,/v=ya™. There is excellent agreement between
the experimental and numerical results for cases 5 and 13. For case 2, figure 1 shows
an apparently large difference. However, this is largely a reflection of the difference
in the numerical and experimental values of i, (see tables 1 and 2).

The experimental and numerical values for a™ and 8% are given in table 3. The
percentage difference in the values is the same as for i, in table 2. From the values
for at, it can be seen that for case 13, the effects of the wall curvature should be
restricted to the outer part of the boundary layer, and a large portion of the boundary
layer should be similar to that for a flat plate. The velocity profile shown for case
13 in figure 1 shows the expected pattern, with a clear logarithmic region. There is
also evidence for the loss of the shoulder in the far field characteristic of a planar
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FIGURE 1. Velocity profiles in wall coordinates (u* =1/, against y*t=(r — 1)afi./v). Lines
are numerical and symbols experimental from Willmarth et al. (1976): lower, case 2; middle,
case 5; top, case 13.

Case af af 8 8F
1 334 27.9 1419 1184
2 46.1 40.5 1727 1517
3 56.4 48.3 1355 1160
4 83.4 73.4 2251 1983
5 198.2 198.2 3171 3171
6 272.0 275.0 2833 2864
7 388.7 405.3 3672 3829
8 456.5 489.6 4255 4563
9 513.6 536.0 2835 2959
10 751.2 778.9 3539 3670
11 891.4 920.4 4132 4267
12 1360.7 1408.0 5612 5807
13 2709.6 27589 4769 4856
14 3158.0 3357.6 5937 6312

TaBLE 3. Values of a* =ail, /v: experimental, a;, from Willmarth et al. (1976); numerical,
at. Also given are the corresponding values of 87 =8, /v.

boundary layer. Experimental results (Lueptow et al. 1985) show that as a™ decreases,
the velocity profile may have a logarithmic region, but the slope will be lower. The
numerical solutions for the cases with the larger Reynolds numbers and values of
a*t (cases 9-14) showed this. For the lower Reynolds numbers, the values of a*t are
such that the effects of curvature should be important in the region that normally
contains the logarithmic velocity profile. Both the numerical and experimental results
reflect this, with initially a decrease in slope and then the loss of the logarithmic layer,
as can be seen for cases 2 and 5 in figure 1. Luxton et al. (1984) studied the flow
at low Reynolds number ranging from 140 to 785 and found that in this range the
logarithmic region had completely disappeared.
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FiGURe 2. Non-dimensional boundary-layer thickness § against non-dimensional distance
x — xo (normalized on the radius a) for a cylinder with @ =0.2375cm and U, =20ms~.
Line, numerical; symbols, experimental (Lueptow et al. 1985).

Lueptow et al. (1985) also performed experiments on a small circular cylinder,
concentrating on the thick turbulent boundary layer where transverse curvature effects
should be significant. They presented results for cylinders with Reynolds numbers
from 10% to 5 x 103, approximately. Here we will use the results for a cylinder of radius
0.2375 cm with free-stream velocities of 20 or 30ms~!, i.e. for Reynolds numbers from
3 x 10° to 5 x 10°, approximately. The cylinder was mounted horizontally, and the
sag at the midpoint was 1.2 radii. Whereas Willmarth et al. (1976) used different sized
cylinders and measured the boundary layer at the same point physically along the
cylinder to obtain values for different regimes, Lueptow et al. (1985) measured it at
different points on the same cylinder. For the cases we will consider, Lueptow et al.
tripped the boundary layer using an 0.08 cm radius O-ring. Also, Lueptow et al. state
that for this cylinder with a flow speed of 20ms~!, there was a uniform streamwise
pressure gradient of —10Pam™! along the cylinder. This has been included in the
numerical results presented here.

Figure 2 shows calculated and measured values for the boundary-layer thickness
along the larger cylinder, and figure 3 the momentum thickness. In the experiments,
x was measured as the distance from the trip. It is not possible to model directly
the effects of such a large trip using a boundary-layer formulation. Instead, a virtual
origin (x¢) was used, estimated by approximately matching the apparent conditions at
the trip indicated in figure 2 in Lueptow et al. (1985). This was done in two ways. First,
the laminar boundary layer was allowed to grow to an appropriate thickness before it
was tripped. Secondly, the boundary layer was tripped in the usual position, and the
results displaced by an appropriate amount. Both approaches produced essentially
the same results.

Figures 2 and 3 show good agreement between the numerical and experimental
values except for those furthest downstream. However, in the experiments, the
cylinder was mounted horizontally, and, as stated by Lueptow et al. (1985), the
sag was sufficient to suggest that it may be modifying the boundary-layer thickness.
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FiGure 3. Non-dimensional momentum thickness 6 against non-dimensional distance x — xg
(normalized on the radius a) for a cylinder with @ =0.2375cm and U, =20ms"'. Line,
numerical; symbols, experimental (Lueptow et al. 1985).
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0.001 1

Reynolds stress

X

FiGure 4. Non-dimensional Reynolds stress (—u’v’) against distance across the boundary layer
(r — 1) for a cylinder with ¢ =0.2375cm and U,, =20ms~!. The top line gives the numerical
results for a flat plate with § =7.57, the middle line the cylinder with § =7.57 and the lower line
the cylinder with § =4.69. The symbols are experimental values for a cylinder from Lueptow
et al. (1985) with § =4.69 (+) and § =7.57 (x). Distances are normalized by a and Reynolds

stress by pU2.

In particular, the effect of sag would be to thin the boundary layer toward the
downstream end of the cylinder. The results presented in figures 2 and 3 are consistent
with this.

Lueptow et al. (1985) gave plots of the Reynolds stress. Figure 4 compares numerical
and experimental values of —u'v’ for U, =20ms~!. Also shown are the predicted




Flow along a long thin cylinder 11

values of the Reynolds stress for an equivalent case on a flat plate, which are
consistent with flat-plate experimental values (see Lueptow et al. 1985). There is a
marked difference in the Reynolds stress distribution between the cylinder and the
plate, with larger values near the wall and a faster drop off away from the wall.
The numerical and experimental distributions for the cylinder have the same shape,
but the numerical predictions are, in general, higher than the experimental values.
However, we note that Lueptow & Haritonidis (1987) state that the measurements
of the Reynolds stress reported in Lueptow et al. (1985) were made by a probe with
poor spatial resolution.

The experimental values collapse onto a single curve near the wall (r — 1 < 2), but
separate further away from the wall, reflecting the growth of the boundary layer.
The numerical values also show this behaviour. A comparison was made between the
experimental and numerical values for U,, =30 ms~!, with similar results.

Lueptow et al. (1985) also give values for the friction velocity i, obtained from a
curve fit to the experimental results, and from matching the mean velocity profile to
that expected for a flat plate. There was a significant difference between the two sets of
values obtained in this way (up to 40 %). The values we predict show good agreement
with those obtained in Lueptow et al. (1985) by matching the velocity profile to the flat-
plate one. With U,, =20ms~!, the experimental values range between i,/ U, = 0.053
where § =4.69 and 0.049 where § =8.11. The respective numerical values are 0.0488
and 0.0496 (the slight increase with x is due to the effect of the favourable pressure
gradient). At 30ms~!, the experiments gave /U, =0.048 at § =5.59 and 0.047 at
8 =8.53. The equivalent numerical values are 0.0460 and 0.0455.

The comparisons made above have shown that simulations using the Spalart—
Allmaras turbulence model can faithfully reproduce the major features of a turbulent
boundary layer along a cylinder, at least for the flow regimes for which detailed
experimental measurements are available. As well as reflecting the differences between
the boundary layer of a plate and a cylinder, given the uncertainty in experimental
values, there is a large measure of quantitative agreement between the numerical
and experimental results. In the next section, the code will be used to investigate the
behaviour of the flow along cylinders with a range of Reynolds numbers.

2.3. Results
Numerical predictions for the non-dimensional wall shear stress,

Ty = a—u(x, 1), (2.8)
or

near the leading edge of the cylinder with Re = 10° are shown in figure 5. Also shown
in figure 5 are the numerical values for a flat plate with the same reference Reynolds
number. The boundary layer was tripped at x =10. Upstream of this, as expected,
there is little difference in the values for the cylinder and the flat plate. However, as
soon as the boundary becomes turbulent the two sets of results diverge, with higher
skin friction for the cylinder. .

Figure 6 shows the boundary-layer thickness § =§/a against x for Re=10°. Once
the flow is tripped, the boundary layer grows rapidly, and is of the same size as the
cylinder before x =80. By this stage, the effects of the transverse curvature will be
significant, as can be seen in figure 5. As for the laminar case, the boundary layer is
thinner with higher wall shear stress than the equivalent flat-plate flow.

Figures 7 and 8 are similar to 5 and 6, but cover a much larger distance. The
difference between the flat plate and cylinder flows increases downstream. Also, for
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FIGURE 5. Non-dimensional wall shear stress (in units of u U, /a) versus distance (in units of
the cylinder radius a) for Re=10°. —, cylinder; -- -, flat plate.
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FIGURE 6. Boundary-layer thickness § versus distance along the cylinder x (in units of the
cylinder radius a) for Re=10°. —, cylinder; -- -, flat plate.

the cylinder, the wall shear stress appears to tend to a constant value. However, a
calculation was performed for a much longer run, until x = 10°, and there was still
a slow decay in the predicted value of the wall shear stress for the far downstream
portion of the cylinder. It was not possible to determine whether this decay would
continue indefinitely, or whether the wall shear stress was tending asymptotically to
a finite value. However, the decay was extremely slow; from x =5 x 10* to 10° it was
approximately 0.3 %. Physically, in water, a non-dimensional length of 5 x 10* with
Re = 10° would represent a length of approximately 1 km for a cylinder with a radius
of 2 cm and a free-stream velocity of 5ms™!, a typical speed for a sonar array. In
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FiGure 8. Boundary-layer thickness § versus distance along the cylinder x (in units of the
cylinder radius a) for Re=10°. —, cylinder; - - -, flat plate.

air, the length would be approximately 2.5 km for a 5cm radius cylinder with a flow
of 30ms~1.

For all practical purposes, and within the limits of the expected accuracy of such
calculations, for Re=10° the boundary-layer model is predicting that the wall shear
stress is constant, except near the leading edge. Calculations were performed for a
range of Reynolds numbers from 1 to 10°. The results were similar to those for 10°,
with a thinner boundary layer and higher surface wall shear stress for the cylinder
than for the flat plate, and with the wall shear stress tending to a constant, or
almost constant, wall shear stress far downstream. Lueptow & Haritonidis (1987)
measured the wall shear stress along a cylinder for a number of flow speeds and
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used the data to produce a fit of the variation of t, with Re,, the Reynolds number
based on the distance along the cylinder from the point the boundary layer was
tripped. This gave a weak dependence on distance, with the friction coefficient given
by C;=0.0123 Re;*%. However, for each of the three flow speeds used to produce
this fit, the data could be interpreted as showing an initial drop in t,, followed by
an extended region where there is little change (see Lueptow & Haritonidis (1987),
figure 6), consistent with the pattern shown in figure 7.

Furey et al. (2004) investigated the effects of the cylinder length on the mean drag
for a cylinder of radius 0.445mm and lengths from around 8 to 150 m by direct
measurement of the force exerted on the cylinders. They present results for four flow
speeds from 3.1 to 144 ms~!. An unexpected result is that there are fluctuations in the
drag rather than a decrease with length (this was also reported in Cippola & Keith
(2003a) where similar results with fewer data points are presented). No explanation
of this effect was given. Although the values fluctuate, there is no apparent overall
decay in the level of the wall shear stress for any of the flow rates in the data shown
in Furey et al. (2004). The data for the largest flow rate (14.4ms™!) was digitized and
a linear regression analysis was performed. Within the accuracy of this procedure, the
slope was zero. In fact, by dropping one value from the data set (the last one) the
slope changed from a very small negative value to a small positive one. The mean
value of the wall shear stress values shown in figure 6 of Furey et al. (2004) was
estimated as 430 M m~2. By comparison, the estimate from the boundary-layer code
was 395N m~!2, within 10 %. There was a similar level of agreement for the other
flow speeds (the numerical values are 179 Nm~'? for U, =9.3ms™!, 63Nm~!? for
U,=5.2and 25Nm~!? for U, =3.1).

Below, we will refer to a constant wall shear stress to refer to a representative value
of the wall shear stress in the region where there is little or no variation over a long
distance (much less than 1% over a non-dimensional distance of at least 10%). It is
important to note, however, that there may still be some change, and that this is a
prediction obtained using a turbulence model, although one that has been shown to
behave well for this particular application.

The Reynolds stress —u/v/ at x =2 x 10* (§=233.8) and x=10° (§=288.3) for
Re =10 is shown in figure 9. There is little difference between the Reynolds stress
distribution at these two widely spaced points, except in the far field, reflecting the
downstream growth of the boundary layer. Over most of the boundary layer, the
level of the Reynolds stress is low, indicating that strong turbulence is found only in
the near-wall region, and that the far field is behaving essentially as a laminar flow.
Further, there is little if any spatial development of the flow near the wall. This effect
can also be seen in the velocity distribution across the boundary layer (see below for
Re=10).

For axisymmetric flow on a cylinder with zero pressure gradient, the momentum
integral equation becomes

d [~ Tw
dx/l u(l—u)rdr = Re' (2.9)
Hence, the wall shear stress tending to a constant implies that the momentum thickness
will grow as x!/2 for large x. The boundary-layer thickness would also be expected to
grow as x'/2. As can be seen from figure 10, the results from the numerical solution
support this.

Cippola & Keith (2003a) and Furey et al. (2004) used (2.9) with the experimental
drag values to estimate the variation in momentum thickness with length of the
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cylinder. There is little difference between the values obtained from (2.9) using the
mean value of the experimental results and those plotted by Furey et al. (2004)
obtained using the distribution of wall shear stress as a function of x. Also, Cippola
& Keith (2003a) plotted the estimated values of the momentum thickness non-
dimensionalized by v/ii, against the momentum thickness Reynolds number, and
noted that the apparent linear relationship could only be obtained if &, was constant.

As noted above, the smaller the value of a*, the closer to the wall the effects of
curvature will be felt. The smallest value of a* for the data presented in Willmarth
et al. (1976) or Lueptow et al. (1985) is 33.4 (table 3). This value is sufficiently large to
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FIGURE 11. Velocity in wall units (u™ =i/ii, against y© =(r —1)afi./v) close to the wall with
Re =482. This shows the numerical results for a cylinder (bottom curve) and a flat plate with
the same value of the wall shear stress (second from top), plus the corresponding theoretical
curves for the laminar sublayer.

suggest that the laminar sublayer should be similar to that for a flat plate. Figure 11
shows the numerical predictions for u™ against y* for the cylinder for case 1 from
Willmarth et al. (1976), and for a flat plate with the same value of the wall shear
stress. Also shown are the profiles from (1.1) and from u™ = y*. For very small values
of y* (2 or less) these all produce essentially the same velocity profile. However, by
yT =5 there is a noticeable difference between the velocity for the cylinder and the
flat plate, and it is clear that by this stage, which is significantly less than y™=a™,
(1.1) provides a better comparison with the numerically generated velocity profile
than the planar model.

Luxton et al. (1984) have performed experiments for flow with the Reynolds number
as low as 140, which has a* of approximately 13. The boundary-layer model produced
a value of a™ of approximately 11 with the same boundary-layer thickness. Given the
level of uncertainty, this level of agreement is as good as could be expected. There is,
however, no data available that we are aware of in the literature for flows with a™
less than 10, when the effects of curvature would be expected to be significant right
down to the wall. A calculation was performed with a very low value of the Reynolds
number, Re = 10, which gave a far downstream value of a* of 1.49. Figure 12 shows
the wall shear stress. Again, t,, appears to tend to a constant as x — oo. Figure 13
shows the velocity in wall units at x =10% and 2 x 10°, and the predicted near-
wall behaviour from (1.1). There is little difference between the velocity at the two
points except a long way from the cylinder, with agreement up to y* at least 10°.
The difference in the far field reflects the continuing growth in the thickness of the
boundary layer. Note that since the scaling is the same for the two positions used
in figure 13, the velocity in physical terms matches up to the same point, which is
approximately 700 radii from the cylinder.

It can also be seen that (1.1) gives a good estimate for the velocity up to y* ~ 20,
much further than would be expected for a flat plate or for a cylinder with a much
larger value of a™. This is a reflection of the fact that the turbulence model does not
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Re=10. Numerical values are shown for x ~10° (middle curve) and 2 x 10° (lowest curve).
Also shown is the theoretical curve u™ =a™ log(1 + y*/a™) (top curve).

produce a significant amount of turbulent viscosity in the near-wall region, with the
model predicting a laminar sublayer much larger than usual.

Luxton et al. (1984) considered the variation of the friction velocity with Reynolds
number from a number of different sets of experimental data. They produced a fit
which can be written as

7, = 0.0121 Re%8. (2.10)



18 O. R. Tutty

103 L

10% £

10k

Wall shear stress

100 L

10° 10! 102 103 10* 10° 106
Re

FiGURE 14. Dimensionless wall shear stress (in units of u U,/a) against Reynolds number.
The symbols are values from the numerical model, and the lines are 7,, =0.0121Re%® (solid)
and 7, =0.00876Re"3,

A least-squares fit was performed for numerical values of the far downstream wall
shear stress for Reynolds numbers from 200 to 10°. This gave a similar fit

T, = 0.00876 Re*%3, (2.11)

Figure 14 shows the numerical values for the dimensionless wall shear stress versus
the Reynolds number on a log—log scale. Also, shown are the predictions from (2.10)
and (2.11). On the scale shown, there is little difference between (2.10) and (2.11),
with both showing good agreement with the numerical values for the higher Reynolds
numbers.

3. Navier—Stokes problem
3.1. Formulation

The predictions made above using the boundary-layer model suggest a two-layer
structure in the boundary layer, in which the mean properties of the flow near the
wall are constant (or almost constant), while the outer flow continues to develop
spatially. While it is not possible to do a Navier—Stokes solution for the full problem
because of the size of the domain and computational requirement, a periodic model
problem can be formulated, based on the scenario suggested by the boundary-layer
results.

Consider a long cylinder with impulsively started flow along it, and suppose that
we perform an unsteady boundary-layer calculation using the turbulence model as
above. At any time, there will be a point along the cylinder, x = B(f) upstream of
which the mean flow with be developing spatially but constant in time. Downstream
of x = B(t), the mean flow will be uniform in space but varying with time (figure 15).
Denote by x =C the point downstream of which the mean wall shear stress for the
fully developed flow will be constant in the steady boundary-layer calculation. If
B(t) > C, the flow downstream of x = C near the wall should have constant properties
in time and space. Thus, if we consider a section of the cylinder far downstream
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FIGURE 15. Development of the boundary layer, The point x = B(r) marks the transition
between spatial and temporal behaviour of the boundary layer. x = C is the point where the
wall shear stress takes a constant value.

with x > B(t) > C, the flow should be spatially periodic on the section, provided the
section is sufficiently long.

We will consider flow on a periodic domain, developing in time. If the model
presented above is correct, the wall shear stress should settle on a value close to
that predicted by the boundary-layer model, and hence consistent with experimental
values. Also, near the surface, the mean velocity profile should be close to that given
by the boundary-layer model, as should the Reynolds stress —u’v’. These will provide
tests for the feasibility of the model.

Further, the boundary-layer model suggests that strong turbulence exists only near
the wall, where there is little variation on the mean flow. Hence, the contribution to
surface pressure fluctuations from this part of the flow should not vary significantly
with time provided the boundary layer is thick enough, with the variation in the
pressure spectra with time coming from the large-scale motions, affecting mainly the
low-frequency range (see Bull (1996) or Farabee & Casarella (1991) for a discussion
of frequency ranges and their scalings in wall-bounded boundary layers).

Also, when using the turbulence model but with the flow developing in time and
uniform in space, the value of the wall shear stress should settle on a value close
to that obtained from the spatial boundary-layer model. Figure 16 shows the result
of a time-dependent calculation with Re = 10°. There is excellent agreement with the
spatial model.

The governing equations in non-dimensional form are the continuity equation

ou Jdv v 1w

T T Iy 3.1
3x+8r+r+r8¢ ’ (3.1)

and the Navier—Stokes equations

ou oP 1

— 2, —vRy = —— + —Vu, 3.2

8t+w V82 8x+Revu (3.2)
ov oP 1 v 2 dw
—tuy—wR, = —— + — (V- — — = — 3.3
ar TS T Wi 8r+Re<vv r r28¢>’ (3:3)
ow 10P 1 w 2 Jv
42, —u = —— At — (VP —— + =, 34
g TV r8¢>+Re(Vw r2+r28¢> (34)

where u = (u, v, w) is the velocity in polar coordinates (x, r, ¢),

,_ 9 9 1o 19
C9x2 a2 rar  r2 g2
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FIGURE 16. The wall shear stress (in units of uUy,/a) against time (in units of a/Uy)
for a time-dependent but spatially uniform flow using the Spalart-Allmaras turbulence
model. Re=103. The straight line gives the downstream value from the spatially developing
boundary-layer model.

is the Laplacian,

20,2, 2 = (-l 220 W A0 _
( 2 (r or  rag rop dx’ ox 8r> (35)

is the vorticity, and
P=p+jlul (3.6)
is a modified pressure. The time is written in non-dimensional form as t =7 U, /a. The
inertial terms in the Navier—Stokes equations (3.2)—(3.4) have been written in vorticity
form as this has better numerical characteristics than the standard convective form.
The flow is calculated on a cylinder of non-dimensional length L. The boundary
conditions are

u=0 on r=1, —%L<x<%L, (3.7)
u—(1,0,0) as r — oo. (3.8)

Periodicity implies
u(iL,r,¢,t) =u(—1L,r, ¢,1). (39)

3.2. Numerical

The code developed for this study uses standard methods, and thus will be described in
outline only. Fourier series are used in the streamwise (x) and polar (¢) directions, and
a second-order central difference method in the radial (r) direction. As is usual with
simulations of turbulent flow, a pseudospectral method is used, with the nonlinear
terms handled explicitly and the linear terms implicitly. A second-order Adams—
Bashforth method is used for the nonlinear terms, and a second-order backward
difference formula is used for the time derivative. At each time step, the momentum
equations are solved to obtain an intermediate velocity field. This velocity is then
updated through a pressure correction substep which ensures that the continuity
equation (3.1) is satisfied at each time step. As in Neves et al. (1992), to simplify the
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numerical procedure, the cross-coupling viscous terms in (3.3) and (3.4) were included
with the nonlinear terms. This does not alter the formal accuracy of the scheme.

A staggered grid was used, with the radial velocity v defined on the grid points
r; and the pressure and the other velocity components at the midpoints. Staggering
the variables in this manner allows the discrete form of the continuity equation to
be satisfied within rounding error. The grid in r was stretched so that the points are
clustered near the surface of the cylinder.

We denote the Fourier transform of f as f;,, where j and m are the mode numbers
in x and ¢, respectively. In the far field (r =r,.), the mean value of the streamwise
velocity ug is set to the free-stream value, and the radial derivative of the other
modes of u are set to zero. The modes of the azimuthal velocity w also have a zero
radial derivative, while from continuity (3.1)

a(rv;m) =0 at r = rygy.-

The mean value of the pressure Py, was set to zero in the far field, which provides
the necessary normalization of the pressure. Again, a zero derivative condition was
used for the other modes.

The scheme reduces the Navier—Stokes equations to a system of tridiagonal
equations for the Fourier modes of the velocity and the pressure, second-order
in time and space, which are easily solved.

An updated version of the code uses a third-order Runge—Kutta time-stepping
method (Nikitin 2006), in place of the second-order Adams—Bashforth backward
difference scheme used in the original code. It was not practical to repeat all the
calculations described below. However, a test case was performed, using the same
grid with both codes and Re=10°. There was no significant difference in the results.
Also, the computational effort was similar. The Runge-Kutta method was more
stable, so that a larger time step could be used, but this only compensated for the
increased effort per time step.

An initial condition must also be specified. Initially, the streamwise velocity u was
given an exponential growth from zero at the surface to the free-stream value of
1, plus a random disturbance added to all velocity components. This was sufficient
to provoke transition provided the boundary layer was sufficiently thick. However,
it took up to + =2000 for the flow to undergo transition and for the turbulence to
become established. To avoid this unproductive computational effort, for most runs,
and for all those with fine grids, the results from an existing calculation where the
flow was already turbulent were used to initialize the flow.

The numerical scheme described above can be used for a direct numerical solution
(DNS) of the problem in which all scales are resolved. However, at the higher Reynolds
numbers studied, such a calculation was impractical because of the computational
effort required. Hence for these Reynolds numbers, a large eddy simulation (LES)
approach was used. In this method, the larger scales are resolved, while the effects
of those that are too small to be represented on the grid are simulated by the use
of a subgrid model. The subgrid model consists of an eddy viscosity term which is
designed to act as a filter to provide an appropriate decay of the spectrum at higher
wavenumbers.

The subgrid model used is the standard Smagorinsky model with Van Driest
damping to represent the reduced growth of the small scales near the surface. The
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subgrid viscosity i, is given by
[ise = Re(coA)’D* S (3.10)

where ¢y =0.05, S =(28;;S;;)"/%, S;; is the rate of strain tensor, and A =(r AxAr A¢)'/?
gives the characteristic local grid step. D is a wall damping function given by
+

D=1—exp <—yA>, (3.11)

where A =26.
The subgrid model is incorporated into the numerical scheme by multiplying the
viscous terms by a non-dimensional viscosity u where
wo=1+ g (3.12)
or
w = max(1, p,). (3.13)

An advantage of (3.13) over the usual model (3.12) is that, if the subgrid viscosity
is sufficiently small, u will be 1, and the calculation will be DNS. For the lower
Reynolds numbers considered, 2000 or less, this was the case and the LES model was
not used. Swapping between (3.12) and (3.13) provides a simple method of estimating
the effect of the LES model.

When the LES method was used, at each time step, u,, was calculated for each
value of r by using the strain S averaged over x and ¢, an approach used by Moin &
Kim (1982). The LES model is easily incorporated into the numerical scheme using
this method. Also, it is consistent with the expected behaviour of the flow, where the
inner part of the boundary layer should tend to a constant state with a constant value
of the wall shear stress.

It is known that the Smagorinsky model is overly dissipative with regard to the large
scales in the flow. Therefore, the subgrid model was applied only to high-frequency
modes, usually the top eighth, although this was varied to assess the effect of varying
the LES model.

A number of tests were performed to check the code. These included analytic tests
of the one-dimensional Helmholtz and Poisson solvers arising from the momentum
and pressure equations, the use of known functions for the formation of the nonlinear
terms, and solutions of Burgers equation to test the time stepping. Results from the
code operating in planar mode were compared with those from studies of channel flow,
with excellent agreement. Also, the travelling-wave solutions of Wedin & Kerswell
(2004), which are unsteady, nonlinear solutions of the Navier—Stokes equations, were
compared with solutions obtained from a version of the code developed for pipe flow.
Again, there was good agreement.

One of the major aims of the work is to investigate the effect of the Reynolds
number of the noise generated at the surface of the cylinder by the turbulent pressure
fluctuations procedure. This can be measured by the power spectrum (power spectral
density) of the pressure. The pressure was circumferentially averaged at a specific
value of x, the data were split into a number of samples, a Hanning window was
applied to each sample, normalized to ensure that the variance of the windowed data
matched that of the original data, and the power spectrum was then calculated as the
average over the samples.

Table 4 gives the parameters for the grids used in the Navier—Stokes calculations.
This is not a complete list; other grids were used to verify the accuracy of the
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Re a* J K M L LT AxT  A¢T
300 185 512 100 64 96 1775 3.5 1.8
500 287 512 100 64 96 2757 5.4 2.8
10° 528 512 120 256 96 5070 9.9 1.3

2 x 10° 98.1 512 100 128 48 9416 9.2 4.8
5x10% 2234 256 120 64 48 10721 419 219
5x10% 2234 512 120 256 24 5361 10.5 5.5

10* 4184 512 100 128 48 20083 392 205

10* 4184 512 100 256 24 10042 19.6 103
5x10* 1824.8 512 100 256 24 43796 855 448
5x10* 1824.8 1024 100 512 24 43796 428 224

TABLE 4. Grid parameters. Axt =a*L/J is the streamwise grid step and A¢p™ =2nat/M the
azimuthal grid step at the surface of the cylinder in wall units. Lt =a* L is the length of the
cylinder in wall units. a™ is calculated using values from the boundary-layer model. Where
two values are given for a particular Re, the first was used to generate the wall shear stress
and the second the wall pressure spectrum.

Re Twb Twn ﬁrmx Prms

300 .14 138 133x107° 2.77x1073

500 1.65 1.87 134x1073 2.79x1073

10° 279 291 130x1073  3.42x1073
2x10° 481 474 128x107%  3.62x1073
5%10° 998 978 1.17x107%  4.39x1073

10* 175 172  1.03x107° 4.71x1073
5% 10 666 633 0.84x10°?

TABLE 5. Characteristic values from the flow. 7, and t,, are non-dimensional values of the
wall shear stress (in units of wU,/a) from the boundary layer and Navier—Stokes models,
respectively. The r.m.s. pressure values are in units of pU2, and p,,; is the circumferentially
averaged pressure and p,,,s is the point pressure.

solutions, but these are the grids used to generate the plots presented below. Also,
the power spectrum of the surface pressure was much more sensitive to variations in
the grid than the spatially averaged wall shear stress. Hence, for the higher Reynolds
numbers (Re =15 x 10° and above), relatively short runs with finer grids were used to
collect data to calculate the pressure spectra.

Table 5 gives values for the mean wall shear stress and the r.m.s. pressure values
for the circumferentially averaged wall pressure. Also given are values for the point
r.m.s. pressure where available.

The azimuthal grid step increases linearly with distance from the surface of the
cylinder, leading potentially to a lack of resolution in the outer part of the flow.
However, the boundary-layer results presented above strongly suggest that the major
turbulent effects will be confined to a region close to the surface. Therefore, we might
expect that the results will be tolerant of this increase in the grid step away from
the surface. For all Reynolds numbers, at least two different values of M were used
to evaluate the effects of the azimuthal grid density. Figure 17 shows power spectra
for Re =10 with 64, 128 and 256 points azimuthally, but otherwise the same grid as
in table 4. The spectra are given for the non-dimensional circumferentially averaged
wall pressure against the frequency w, where the discrete frequencies are given by
w, =m(2n/T), where T is the time for each sample. There is no significant difference
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FIGURE 17. Non-dimensional power spectra for the wall pressure (in units of ap?U2 /2m)
against frequency (in units of U, /a radians) for Re =103. The bottom three lines are for the
circumferentially averaged pressure for M =64, 128 and 256. The top line is for point pressure
for M =256.

in the spectra. The behaviour of the wall shear stress was also unaffected by the
variation in M. The power spectrum for point wall pressure for M =256 is also
shown in figure 17.

A number of different factors must be taken into account when selecting the size
of the domain. The boundary-layer thickness will grow with time. As the largest
structures in the flow would be expected to be the size of the boundary layer, the
periodic model will not be valid once the boundary-layer thickness approaches the
length of the domain. We are interested in thick boundary layers. In practice, this
requires the non-dimensional boundary-layer thickness to be 10 or greater, which
suggests that L should be at least 20. Examination of the solutions over a range
of Reynolds numbers showed that once the boundary-layer thickness became much
greater than half the length of the cylinder, large structures could be observed in
the far field which clearly would not be independent between periods. When this
occurs, the effect is felt throughout the boundary layer. In particular, assuming that
the boundary layer is thick enough for the inner part of the flow to have reached
a constant state, with the wall shear stress oscillating around a constant value, the
level of wall shear stress will drop below this value when the boundary layer becomes
too thick. Usually, following this drop, the wall shear stress levelled off again around
a lower value. That this drop in the level of the wall shear stress was due to the
shortness of the domain was demonstrated by performing calculations with different
domain lengths, but all other parameters the same. In particular, if a solution in
which the boundary-layer thickness was approaching half the length of the domain,
but the wall shear stress had not dropped below its equilibrium level, was used to
initialize a calculation on a longer domain, this second calculation would continue
with its wall shear stress maintaining its value past the point where it would have
decreased on the shorter cylinder.
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In contrast, allowing the boundary layer to grow past half the length of the cylinder
had little effect on the power spectrum of the surface pressure.

For the lower Reynolds numbers, it was necessary for L to be considerably greater
than 20 for two reasons. First, the cylinder must be long enough to accommodate
the near-wall structures in the turbulence. Secondly, we wish to investigate the effect
of the size of the cylinder on the surface pressure fluctuations. This requires the
Reynolds number to be varied by fixing the free-stream velocity U,, and varying the
cylinder radius a. Since the time scale is a/U.,,, the smaller the Reynolds number, the
longer the run required in non-dimensional terms to collect sufficient data in physical
time to calculate the pressure spectrum. This implies a thicker boundary layer and
hence a longer cylinder, particularly as the growth of the boundary layer with time is
larger at lower Reynolds numbers. Integrating the streamwise momentum equation
over the domain produces

d 2
o (87 +28)) = =T (3.14)
which with (2.10) or (2.11) implies that the growth rate of the displacement thickness
will increase as Re decreases. This effect will be more pronounced at very low Reynolds
numbers when (2.10)/(2.11) do not apply (see figure 14). The boundary-layer and
momentum thicknesses would be expected to behave in a similar manner to the
displacement thickness.

The values of L given in table 4 are sufficient to satisfy these requirements. The
position of the far field boundary (r,...) was chosen, depending on Reynolds number,
to allow the boundary layer to grow sufficiently thick without wasted effort. Grid
points were distributed radially so that there were sufficient points near the wall to
resolve the inner part of the boundary layer where the turbulence is strongest. An
example, for Re=10°, of the radial grid can be seen in figure 20. In all cases, the
radial grid was chosen so that the grid step at the wall was less than one in wall units.

3.3. Results: Re=10?

Calculations were performed for Re=10° for a number of different grids and domain
sizes. For this Reynolds number, a DNS calculation was performed with p,, =0. In
general, the results from the different runs were consistent, with the wall shear stress
settling on a value close to that predicted by the boundary-layer model. Figure 18
shows the spatially averaged value of the wall shear stress for two runs, with different
grids azimuthally and radially. The longer run has r,.,, =75 and M =64 and the
shorter, r,.. =50 and M =256. Axially, both are as in table 4. There is no significant
difference in the behaviour of the wall shear stress for these two runs. Also, a long
run was performed with M =128, which is not shown for clarity, with similar results.
The pressure spectrum was the same for all three runs (figure 17).

If the boundary-layer model is accurately modelling the Navier—Stokes problem,
then they should both have the same mean streamwise velocity profile, at least
near the wall. Figure 19 shows the mean velocity profiles from the Navier—Stokes
calculation (averaged in x and ¢), and the predictions from the spatial boundary-layer
model, when the boundary-layer thickness is approximately 18.7. There is excellent
agreement.

The Reynolds stress distribution should also match that from the boundary-layer
model. Figure 20 shows the values of —u’v’ against r (averaged in x, ¢ and ¢ for
the Navier—Stokes calculations) when the boundary-layer thickness is approximately
18.7. Again there is excellent agreement.
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FIGURE 18. The mean wall shear stress (in units of p Uy/a) against time (in units of a/Uy)
for Re=103. The solid line has M = 64 and the dashed line M =256. The straight line gives
the downstream value from the boundary-layer model.
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FIGURE 19. Mean streamwise velocity u =ii/U,, across the boundary layer (normalized by the

cylinder radius a) for Re=10% when S/a ~ 18.7 The line is from the boundary-layer model
and the symbols from the Navier—Stokes calculation.

The agreement between the boundary-layer and Navier—Stokes results shown in
figures 19 and 20 is typical of comparisons made using Navier—Stokes results from a
number of runs with different resolutions and with different boundary-layer thickness.
Also, the variation in time of the streamwise velocity and the Reynolds stress
distribution is confined mainly to the outer part of the flow, reflecting the growth of
the boundary layer, consistent with the predictions from the boundary-layer model.

Experimentally, in wall-bounded flows, structures in the flow are convected at a
velocity somewhat below the free-stream velocity. There are a number of ways of
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FIGURE 20. Reynolds stress —u’v’ (in units of U2) across the boundary layer (with distance

normalized by a) for Re=103 when §/a ~ 18.7 The line is from the boundary-layer model
and the symbols from the Navier-Stokes calculation.

identifying the convection velocity. Here, we calculate the ‘coherence’ between the
circumferentially averaged pressure at different points on the cylinder. We take the
circumferentially averaged surface signal at two points, x; and x,, and calculate their
spectra, ¢; and ¢y, and the cross-spectrum ¢y, all averaged over a number of
samples. The normalized magnitude of the cross-spectrum |¢»| /(¢11¢22)"/? gives the
correlation between the two signals, while the phase of the cross-spectrum and the
distance between the two measurement points may be used to estimate the convection
velocity.

Figures 21 and 22 show the magnitude and phase of the coherence for signals a
distance of 3 radii apart. Also shown in figure 21 are values from the empirical model
formulated by Corcos (1963), which has an exponential of the form exp[—c|w(x; —
x1)/ U], where ¢=0.1 was determined empirically. The behaviour of the coherence
is consistent with those obtained experimentally for wall turbulent bounded flow as
is the value of the constant c (see e.g. Farabee & Casarella 1991), and shows evidence
of broadband propagation. From the phase (figure 22) and x, — x; =3, we obtain an
estimate of the convection velocity as 0.7.

Figure 23 shows contours of the two-dimensional axial wavenumber (o)-
frequency (w) spectrum of the surface pressure fluctuation, where «; = j(2n/L) and
w, =m(2n/T). The contours take the form of a narrow band (the ‘convective ridge’),
consistent with the broadband propagation of structures at a well-defined convection
velocity of U, =~ 0.7. According to Taylor’s hypothesis it should be possible to relate
the axial spectra (@ («)) to the temporal spectra (¢(w)) through

¢(w) = U &(U, a). (3.15)

Figure 24 shows a comparison between the temporal spectra calculated directly
and that obtained from the spatial spectra through (3.15). There is a good level of
agreement. A similar result was obtained by Neves & Moin (1994).

The convection velocity was calculated for flow with a range of Reynolds numbers.
In general U. ~ 0.7. This is consistent with the experimental results for sonar arrays
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FIGURE 21. The magnitude of the coherence of the circumferentially averaged wall pressure
against frequency (in units of radians x U,,/a) for Re =103. The dashed line is for the Corcos
model (exp[—c|w(x; — x1)/U.|]) with ¢=0.1, x, —x; =3 and U, =0.7.
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FIGURE 22. The phase of the coherence of the circumferentially averaged wall pressure (in
radians) against frequency (in units of U,,/a) for Re =103

of a convection velocity of 0.7 to 0.8 of the tow speed. It is slightly higher than the
value obtained by Neves & Moin (1994) of around 0.65.

3.4. Results: variation in Reynolds number

A detailed series of calculations were performed for Reynolds numbers from 300 to
5 x 10°. In all cases, a number of runs were performed with different grids to check
the accuracy of the results. Figure 25 shows the spatially averaged wall shear stress for
Re =300, 500, 1000 and 2000, from Navier-Stokes calculations with no LES model,
and the predictions from the boundary-layer model. For all three Reynolds numbers,
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FIGURE 23. Contours of the two-dimensional axial wavenumber—frequency spectra for the
circumferentially averaged wall pressure (¢ — w, in units of ¢~! radians and U, /a radians,
respectively).

1073

Spatial
Temporal ---------

— —_ —_

S < <
o - =N
T T T

Power spectral density

—_

<
©
T

1 071 0 I | { I
102 107! 10° 10!
Frequency

FIGURE 24. Comparison between the temporal spectra and the estimated spectra using Taylor’s
hypothesis (3.15) with U, =0.7. The spectra are for the circumferentially averaged wall pressure,
and are in units of ap?U2 /2n with the frequency in units of U,/a radians.

the wall shear stress eventually settles on a value close to that predicted from the
boundary-layer model.

Figure 26 shows the wall shear stress for Re=5000 and 10*. For Re = 5000,
calculations were performed in both DNS and LES mode with the same grid. The
results from both calculations are shown in figure 26. There is no significant difference.
Also, there was no significant difference in the circumferentially averaged pressure
spectrum. In wall units, the grid for Re=10* is similar to that for Re=5 x 10
(table 4), and a similar result was obtained. That is, the same level of wall shear stress
and pressure spectra with and without the LES model, with good agreement with the
level of wall shear stress predicted by the boundary-layer model.
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FIGURE 25. Mean wall shear stress (in units of wU,/a) against time (units of a/U,). From
the bottom, the irregular lines are for Re =300, 500, 1000 and 2000. The straight lines are the
values predicted by the boundary-layer model.
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FIGURE 26. Mean wall shear stress (in units of uU,/a) against time (units of a/U,)
for Re=5000 (bottom) and 10* (top). The straight lines are the values predicted by the
boundary-layer model.

For Re=15 x 10%, again the wall shear stress settled around a constant value once
the boundary layer become thick enough. However, in this case, the grid used was
sufficiently coarse that the details of the LES model did have some effect on the
results. Figure 27 shows the wall shear stress for two runs with the same grid (as in
table 4) but with =14 p,, and u = max(1, u,,). Both are within 10 % of the value
predicted by the boundary-layer model (t,, = 66.6), with, not surprisingly, the lower
value of the viscosity giving the higher value of wall shear stress. Again, there was
no significant difference in the pressure spectra for these calculations.
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FIGURE 27. Mean wall shear stress (in units of u Uy/a) against time (units of a/U,) for
Re=50000. The bottom line has u =1+ u,,, the middle line, = max(1, u,), and the top
line is the value predicted by the boundary-layer model.
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FIGURE 28. Power spectra for the circumferentially averaged surface pressure fluctuations for
Uy,=1ms ! and v=1.18 x 107°m?s~!, in Pa? Hz™! against Hz. From the left, the curves are
for Re=5x 10%, 10%, 5 x 103, 2 x 103, 103 and 500.

3.5. Pressure spectra

Pressure spectra can be presented in a number of different ways, depending on the
scalings used. In this work, one of the major interests is the behaviour of the noise from
the pressure fluctuations at the surface of the cylinder as the radius of the cylinder
is decreased. Therefore, the pressure spectra are presented first in physical terms
as Pa’s against frequency in Hertz. Figure 28 gives the circumferentially averaged
wall pressure power spectra for Re=500 to 5 x 10* for flow with U, =1ms™! and
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a fluid with v=1.18 x 107*m?s~!, typical of sea water. The spectra for Re=5 x 10
or greater were obtained with the finer grids given in table 4. For Re=15 x 10* the
streamwise and azimuthal grid steps are still relatively crude (approximately 43 and
22 in wall units, respectively), and from the results with smaller Reynolds number,
where it was possible to use much finer grids in wall units, suggest that there would
still be some change with further refinement of the grid. However, the results from
lower Reynolds numbers also suggest that the spectrum with this resolution gives
a reasonable approximation to the fully resolved spectrum, although the decay at
higher frequencies may be too fast (this occurred with coarse grids at low Reynolds
numbers).

As the Reynolds number/cylinder radius decreases, the pressure spectrum increases
in value over a wide frequency range, consistent with the observation that the surface
noise from the turbulence varies inversely with the radius of the cylinder (Marschall
et al. 1993; Potter et al. 2000).

The computational effort increases as the Reynolds number drops below 500
because of the longer non-dimensional time that is required to provide data for the
same physical time when the flow velocity is held constant (the scale factor is a/U,)
and the larger domain required to cope with the thicker boundary layer arising from
the increase in run time and the faster growth rate of the boundary layer. However,
calculations were performed for Re = 300, although with a smaller number of samples,
producing a spectrum with more noise than those shown in figure 28. The spectrum
for Re =300 was similar to that for 500 and 1000, but has not been shown in figure 28
for clarity.

The r.m.s. pressure values (non-dimensional in units of pU2) are given in table 5.
Consistent with figure 28, the r.m.s. values of the circumferentially averaged pressure
increase as Re decreases, until Re =1500. The value for Re =300 is almost the same
as that for 500.

When discussing pressure spectra, it is common to present them in non-dimensional
form using either outer (free-stream or convection velocity and a measure of the
boundary-layer thickness) or inner (friction velocity and time) variables for the
scaling (see e.g. Bull 1996; Farabee & Casarella 1991). Using the outer variables
does not provide any useful information as there is no significant variation in the
spectra with time. In particular, for the longest run in non-dimensional terms, that
with Re=10° and M =256, the boundary-layer thickness approximately doubled
(from around 20 to 40), but there was no significant change in either the point or
circumferentially averaged pressure spectra between the first and second halves of
the run. In contrast to the current situation, for wall-bounded flow, the pressure
spectra for low frequencies commonly scales with the outer variables, in particular
a measure of the boundary-layer thickness. One possible explanation for the lack of
dependence on the boundary-layer thickness lies in the distribution of the strength
of the turbulence. As shown in figures 4, 9 and 20, there is a pronounced peak in the
Reynolds stress near the wall, with a rapid drop in the outer region. This suggests
that the large-scale structures may be correspondingly weak, and may have much less
effect on the pressure spectrum than for flow with planar geometry where the decay
is less severe (see figure 4).

The wall pressure spectra were scaled using inner variables based on the friction
velocity (#1,) and time (v/@#?). This involves multiplying the non-dimensional angular
frequency and spectrum (as shown in figure 17) by 7! and Re’/t,, respectively.
Equivalently, the dimensional frequency (in Hz) and spectra (figure 28) can be
multiplied by 2nv/4i2 and @2 /2nv2, respectively. Circumferentially averaged pressure

w?
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FIGURE 29. Power spectra for the circumferentially averaged surface pressure fluctuations,
non-dimensionalized on the inner variables. From the bottom at low frequencies the curves
are for Re =300, 500, 103, 2 x 10° and 10*. The straight line has slope —9.

spectra scaled by the inner variables are shown in figure 29. At higher frequencies,
the spectra for Re=10* to 10* collapse well (the curve for Re=35 x 10° is omitted
for clarity, but behaves in a similar manner). The curve for Re=35 x 10* does not
match as well, perhaps reflecting a degree of under resolution (it is also omitted
for clarity). However, the curves for Re=300 and 500 do not match those for the
higher Reynolds numbers, despite a reasonably fine grid (table 4). However, for
these Reynolds numbers, the flow will not behave as typical wall-bounded flow; for
Re =500, the circumference of the cylinder is approximately 180 in wall units, and
the flow would not be expected to have the usual structure with a number of streaks
aligned with the flow with a typical spacing of 100 wall units and length of 1000 wall
units. At small enough Reynolds number, the cylinder will interfere directly with the
smallest structures in the flow, and this could lead to a fundamental change in the
behaviour of the flow, and that of the wall pressure spectrum in particular.

Assume that for high frequencies the power spectra scaled on the inner variables
behaves as ;™ where m >0 and w; is the frequency scaled on the inner variables
(figure 28). If we also assume that the non-dimensional wall shear stress 7, behaves
as Re" where 0 <n < 1, as in (2.10) or (2.11), then

®=xU%al f, (3.16)

where @ is the dimensional power spectrum (Pa?Hz™!), f is the frequency in Hz,
a=nm+1)m+1), B=(mn —1)(m + 1) and « depends only on the fluid properties
(p and w). Since n <1, (3.16) predicts that the turbulent noise as measured by the
power spectrum increases as the radius of the cylinder decreases with the flow velocity
held constant. Also, as expected, the turbulent noise increases as the flow velocity
increases. Taking values of m =9 (figure 29) and n=0.8 (2.10 or 2.11) gives « =18
and 8= — 2. That is, with the same flow conditions, the high-frequency noise from
the turbulence will vary as O(a~2) for Reynolds numbers of O(10%) or greater.
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FIGURE 30. Power spectra for the point surface pressure fluctuations for U, =1ms~! and
v=1.18 x 107%m?s~!, in Pa®? Hz"! against Hz. From the bottom at low frequencies the curves
are for Re =300, 10 and 5 x 10%.

Figure 17 shows the point wall pressure spectra as well as the circumferentially
averaged spectra for Re=10%. The point spectrum is approximately an order of
magnitude greater than that for the circumferentially averaged pressure. This is
consistent with the experimental estimates of the difference between point and
averaged pressure given by Bokde et al. (1999) for a flow with Re=3300 and
3/a=4.81. The point r.m.s. surface pressures are larger than the averaged values
for all Reynolds numbers (table 5). In contrast to the circumferentially averaged
values, the point r.m.s. values increase monotonically with Reynolds number (table 5),
although there is little difference between the values for Re =300 and 500.

Figure 30 shows surface point pressure spectra in physical terms for Re =300,
10% and 5 x 103. The curves collapse at high frequencies, but, at low frequencies, the
magnitude of the spectra increases with Reynolds number. The point spectra for
Re =500, 2 x 10° and 10* followed this pattern, which can also be seen in the r.m.s.
pressure values given in table 5 (the lines for these Reynolds numbers are omitted
from figure 30 for clarity). Scaling the data for the point spectra by the inner variables
separates the curves at high frequency.

Neves & Moin (1994) calculated the flow along cylinders with Reynolds numbers
311 and 674. They reported a smaller r.m.s. pressure fluctuation with the lower
Reynolds number when scaled by the mean wall shear. Converting the values given
by Neves & Moin (1994) into non-dimensional values scaled by pU2 gives 3.39 x 1073
for Re=674 and 2.83 x 10~ for Re=2311. The values obtained in this study for the
rm.s. point wall pressure (table 5) closely match those of Neves & Moin (1994).
Snarski & Lueptow (1995) and Bokde et al. (1999) performed experiments at similar
Reynolds numbers to those considered here. Snarski & Lueptow (1995) give a point
r.m.s. wall pressure measurement (scaled on pU?) of 4.32 x 1073 for Re=3644 for
§=5, and Bokde et al. (1999), 4.63 x 103 for Re=3300 for § =4.81. These are
consistent with the values obtained here (table 5).
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4. Conclusions

Calculations have been performed for the zero mean pressure gradient turbulent
boundary layer on a long thin cylinder. The predictions using the Spalart—Allmaras
turbulence model show good agreement with the experimental results over a wide
range of Reynolds numbers. Both experimental and numerical results show that the
boundary layer on a cylinder is thinner and has higher shear stress than for the
equivalent flow on a flat plate. For all practical purposes, the shear stress on the
surface of the cylinder tends to a constant downstream with the boundary layer
growing in thickness as the square root of the distance. This is in marked contrast
to the flow far downstream on a flat plate in which the shear continues to decay as
distance to the power 1/6 with the boundary layer growing as distance to the power
5/6.

The transverse curvature of the cylinder affects the structure of the boundary
layer to an extent which depends on the Reynolds number, or equivalently, the far-
downstream value of a*. For high-Reynolds-number flows (O(10°) or greater), the
transverse curvature effects are restricted to the outer part of the boundary layer, and
there is a logarithmic layer with approximately the same slope as found for the flat
plate. As the Reynolds number decreases, while the log layer may still be present,
its slope decreases. For Reynolds numbers of O(10°) or less, the log layer vanishes,
although the inner part of the boundary layer may still resemble that for a flat plate.
Eventually, however, as the Reynolds number decreases, the effects of the transverse
curvature will be felt all the way to the surface of the cylinder. At this stage, the
velocity profile in the laminar sublayer will be logarithmic rather than linear.

The boundary-layer calculations suggest that when the boundary layer is sufficiently
thick, the mean flow near the surface is constant (or almost constant), but continues
to develop away from the wall as the boundary layer thickens. This occurs in both
spatially and temporally growing flow, and is consistent with the structure suggested
by Luxton et al. (1984) with a fine wall scale and a gross outer scale forming most
of the layer. A periodic Navier—Stokes problem was formulated. The results from
the Navier-Stokes/LES calculations were consistent with those of the boundary-layer
model and experiments. Both the boundary layer and Navier—Stokes models show
that the turbulence intensity peaks near the wall and drops off rapidly in the far field.
Given the increase in area with distance away from the wall, this might be expected.

Circumferentially averaged pressure spectra were calculated from the Navier—
Stokes results. These showed an increase in the surface noise from the turbulence as
the Reynolds number (cylinder radius) decreased, consistent with the behaviour of
sonar arrays. The results (figure 28 and table 5) indicate that the (circumferentially
averaged) turbulent noise on the surface of the cylinder stops increasing when the
Reynolds number is O(10°), i.e. with small cylinders in physical terms. In sea water,
Re=10? corresponds to a cylinder with a radius of less than 1 mm in sea water when
U=1ms"! or 0. mm when U =10ms~!. In air, the radius would be approximately
1.6 mm with U =30ms~".

The r.m.s. values for the circumferentially averaged surface pressure followed the
patterns of the spectra, increasing as the Reynolds number decreased (table 5). In
contrast, the r.m.s. values for the point pressure increased with an increase in the
Reynolds number.

In addition to the results presented above, some calculations were performed for
Reynolds numbers up to 2.5 x 10° using the LES model. Although the grid used
in these calculations was crude, reasonable agreement (within 20 %) was obtained
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with the wall shear stress predicted by the boundary-layer model, and the predicted
surface noise from the circumferentially averaged pressure dropped significantly as
the Reynolds number increased.

Finally, we note that there was little variation in the wall pressure spectra with time,
and hence with the boundary-layer thickness. The analogous result for a spatial flow
developing along the cylinder would be a flow showing little variation with distance
downstream.
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